Cylindrical system
From Online Dictionary of Crystallography
Système cylindrique (Fr) Sistema cylindrico (It).
Definition
The cylindrical system contains non-crystallographic point groups with one axis of revolution (or isotropy axis). There are five groups in the spherical system:
Hermann-Mauguin symbol | Short Hermann-Mauguin symbol | Schönfliess symbol | order of the group | general form |
---|---|---|---|---|
![]() | ![]() | ![]() | ![]() | rotating cone |
![]() | ![]() |
![]() |
![]() | rotating finite cylinder |
![]() | ![]() |
![]() | ![]() | finite cylinder submitted to equal and opposite torques |
![]() | ![]() | ![]() | ![]() | stationary cone |
![]() | ![]() |
![]() |
![]() | stationary finite cylinder |
Note that represents the symmetry of a force, or of an electric field and that
represents the symmetry of a magnetic field (Curie 1894), while
represents the symmetry of a uniaxial compression.
History
The groups containing isotropy axes were introduced by P. Curie (1859-1906) in order to describe the symmetry of physical systems (Curie P. (1884). Sur les questions d'ordre: répétitions. Bull. Soc. Fr. Minéral., 7, 89-110; Curie P. (1894). Sur la symétrie dans les phénomènes physiques, symétrie d’un champ électrique et d’un champ magnétique. J. Phys. (Paris), 3, 393-415.).
See also
Curie laws
spherical system
Section 10.1.4 of International Tables of Crystallography, Volume A
Section 1.1.4 of International Tables of Crystallography, Volume D