Quasiperiodicity

From Online Dictionary of Crystallography

(Difference between revisions)
Jump to: navigation, search
m (Style edits to align with printed edition)
(Tidied translations and added German and Spanish (U. Mueller))
 
Line 1: Line 1:
-
<Font color="blue">Quasi-periodicit&eacute; </font>(''Fr''). <Font color="black">Quasi-periodicit&agrave; </font>(''It''). <Font color="purple">準周期性 </font>(''Ja''). 
+
<font color="blue">Quasi-periodicit&eacute;</font> (''Fr''). <font color="red">Quasiperiodizität</font> (''Ge''). <font color="black">Quasi-periodicit&agrave;</font> (''It''). <font color="purple">準周期性</font> (''Ja''). <font color="green">Cuasiperiodicidad</font> (''Sp'').
== Definition ==
== Definition ==

Latest revision as of 10:16, 17 November 2017

Quasi-periodicité (Fr). Quasiperiodizität (Ge). Quasi-periodicità (It). 準周期性 (Ja). Cuasiperiodicidad (Sp).

Definition

A function is called quasiperiodic if its Fourier transform consists of δ-peaks on positions

 k~=~\sum_{i=1}^n h_i  a_i^*,~~({\rm integers ~}h_i)

for basis vectors ai* in a space of dimension m. If the basis vectors form a basis for the space (n equal to the space dimension, and linearly independent basis vectors over the real numbers) then the function is lattice periodic. If n is larger than the space dimension, then the function is aperiodic.

Comment

Sometimes the definition includes that the function is not lattice periodic.

A quasiperiodic function may be expressed in a convergent trigonometric series:

f(r)~=~\sum_k A(k) \cos [ 2\pi  k. r+\varphi (k) ].

It is a special case of an almost periodic function. An almost periodic function is a function f(r) such that for every small number ε there is a translation a such that the difference between the function and the function shifted over a is smaller than the chosen quantity:

| f(r+ a)-f( r) |~<~ \varepsilon~~{\rm for ~all~ r} .

A quasiperiodic function is always an almost periodic function, but the converse is not true.

The theory of almost-periodic functions goes back to the work by H. Bohr.