Reduced cell

From Online Dictionary of Crystallography

(Difference between revisions)
Jump to: navigation, search
(Created page with "A primitive basis a, b, c is called a ‘reduced basis’ if it is right-handed and if the components of the metric tensor satisfy the conditions below. Because of [[lattice]...")
(Languages)
Line 1: Line 1:
 +
<font color="blue">Maille réduite</font> (''Fr''). <font color="black">Cella ridotta</font> (''It''). <font color="purple">規約単位胞</font> (''Ja'').
 +
 +
A primitive basis a, b, c is called a ‘reduced basis’ if it is right-handed and if the components of the [[metric tensor]] satisfy the conditions below. Because of [[lattice]] [[symmetry operation|symmetry]] there can be two or more possible orientations of the reduced basis in a given lattice but, apart from orientation, the reduced basis is unique.
A primitive basis a, b, c is called a ‘reduced basis’ if it is right-handed and if the components of the [[metric tensor]] satisfy the conditions below. Because of [[lattice]] [[symmetry operation|symmetry]] there can be two or more possible orientations of the reduced basis in a given lattice but, apart from orientation, the reduced basis is unique.
The type of a cell depends on the sign of
The type of a cell depends on the sign of
Line 6: Line 9:
If ''T'' > 0, the cell is of type I, if ''T'' &#8804; 0 it is of type II.  
If ''T'' > 0, the cell is of type I, if ''T'' &#8804; 0 it is of type II.  
-
The conditions for a primitive cell to be a reduced cell can all be stated analytically as follows:
+
The conditions for a primitive cell to be a reduced cell can all be stated analytically as follows.
==Type-I cell==
==Type-I cell==

Revision as of 15:48, 18 December 2017

Maille réduite (Fr). Cella ridotta (It). 規約単位胞 (Ja).


A primitive basis a, b, c is called a ‘reduced basis’ if it is right-handed and if the components of the metric tensor satisfy the conditions below. Because of lattice symmetry there can be two or more possible orientations of the reduced basis in a given lattice but, apart from orientation, the reduced basis is unique. The type of a cell depends on the sign of

T = (\mathbf{a}\cdot\mathbf{b})(\mathbf{b}\cdot\mathbf{c})(\mathbf{c}\cdot\mathbf{a}).

If T > 0, the cell is of type I, if T ≤ 0 it is of type II.

The conditions for a primitive cell to be a reduced cell can all be stated analytically as follows.

Contents

Type-I cell

Main conditions

  • \mathbf{a}\cdot\mathbf{a}\mathbf{b}\cdot\mathbf{b}\mathbf{c}\cdot\mathbf{c}
  • |\mathbf{b}\cdot\mathbf{c}|(\mathbf{b}\cdot\mathbf{b})/2
  • |\mathbf{a}\cdot\mathbf{c}|(\mathbf{a}\cdot\mathbf{a})/2
  • |\mathbf{a}\cdot\mathbf{b}|(\mathbf{a}\cdot\mathbf{a})/2
  • \mathbf{b}\cdot\mathbf{c} > 0
  • \mathbf{a}\cdot\mathbf{c} > 0
  • \mathbf{a}\cdot\mathbf{b} > 0

Special conditions

  • if \mathbf{a}\cdot\mathbf{a} = \mathbf{b}\cdot\mathbf{b} then \mathbf{b}\cdot\mathbf{c}\mathbf{a}\cdot\mathbf{c}
  • if \mathbf{b}\cdot\mathbf{b} = \mathbf{c}\cdot\mathbf{c} then \mathbf{a}\cdot\mathbf{c}\mathbf{a}\cdot\mathbf{b}
  • if \mathbf{b}\cdot\mathbf{c} = (\mathbf{b}\cdot\mathbf{b})/2 then \mathbf{a}\cdot\mathbf{b}2\mathbf{a}\cdot\mathbf{c}
  • if  \mathbf{a}\cdot\mathbf{c} = (\mathbf{a}\cdot\mathbf{a})/2 then \mathbf{a}\cdot\mathbf{b}2\mathbf{b}\cdot\mathbf{c}
  • if  \mathbf{a}\cdot\mathbf{b} = (\mathbf{a}\cdot\mathbf{a})/2 then \mathbf{a}\cdot\mathbf{c}2\mathbf{b}\cdot\mathbf{c}


Type-II cell

Main conditions

  • \mathbf{a}\cdot\mathbf{a}\mathbf{b}\cdot\mathbf{b}\mathbf{c}\cdot\mathbf{c}
  • |\mathbf{b}\cdot\mathbf{c}|(\mathbf{b}\cdot\mathbf{b})/2
  • |\mathbf{a}\cdot\mathbf{c}|(\mathbf{a}\cdot\mathbf{a})/2
  • |\mathbf{a}\cdot\mathbf{b}|(\mathbf{a}\cdot\mathbf{a})/2
  • (|\mathbf{b}\cdot\mathbf{c}|+ |\mathbf{a}\cdot\mathbf{c}|+|\mathbf{a}\cdot\mathbf{b}|)(\mathbf{a}\cdot\mathbf{a}+\mathbf{b}\cdot\mathbf{b})/2
  • \mathbf{b}\cdot\mathbf{c} ≤ 0
  • \mathbf{a}\cdot\mathbf{c} ≤ 0
  • \mathbf{a}\cdot\mathbf{b} ≤ 0

Special conditions

  • if \mathbf{a}\cdot\mathbf{a} = \mathbf{b}\cdot\mathbf{b} then |\mathbf{b}\cdot\mathbf{c}||\mathbf{a}\cdot\mathbf{c}|
  • if \mathbf{b}\cdot\mathbf{b} = \mathbf{c}\cdot\mathbf{c} then |\mathbf{a}\cdot\mathbf{c}||\mathbf{a}\cdot\mathbf{b}|
  • if |\mathbf{b}\cdot\mathbf{c}| = (\mathbf{b}\cdot\mathbf{b})/2 then \mathbf{a}\cdot\mathbf{b} = 0
  • if |\mathbf{a}\cdot\mathbf{c}| = (\mathbf{a}\cdot\mathbf{a})/2 then \mathbf{a}\cdot\mathbf{b} = 0
  • if \mathbf{a}\cdot\mathbf{b} = (\mathbf{a}\cdot\mathbf{a})/2 then \mathbf{a}\cdot\mathbf{c} = 0
  • if (|\mathbf{b}\cdot\mathbf{c}|+ |\mathbf{a}\cdot\mathbf{c}|+|\mathbf{a}\cdot\mathbf{b}|) =  (\mathbf{a}\cdot\mathbf{a}+\mathbf{b}\cdot\mathbf{b})/2 then \mathbf{a}\cdot\mathbf{a}2|\mathbf{a}\cdot\mathbf{c}|+ |\mathbf{a}\cdot\mathbf{b}|