Subperiodic group

From Online Dictionary of Crystallography

(Difference between revisions)
Jump to: navigation, search
m (Style edits to align with printed edition)
m (lang)
Line 1: Line 1:
-
<font color="blue">Groupe sous-périodique</font> (''Fr''). <font color="black">Gruppo subperiodico</font> (''It''). <font color="purple">亜周期群</font> (''Ja'').
+
<font color="blue">Groupe sous-périodique</font> (''Fr''); <font color="black">Gruppo subperiodico</font> (''It''); <font color="purple">亜周期群</font> (''Ja''); <font color="green">Groupo subperiódico</font> (''Sp'').

Revision as of 09:04, 12 October 2017

Groupe sous-périodique (Fr); Gruppo subperiodico (It); 亜周期群 (Ja); Groupo subperiódico (Sp).


A subperiodic group is a group of Euclidean mappings such that its translations form a lattice in a proper subspace of the space on which it acts.

A crystallographic subperiodic group in n-dimensional space is a subperiodic group for which the group of linear parts is a crystallographic point group of n-dimensional space. The crystallographic subperiodic groups in two and three-dimensional space are classified in:

  • frieze groups: 7 two-dimensional groups with one-dimensional translations;
  • rod groups: 75 three-dimensional groups with one-dimensional translations;
  • layer groups: 80 three-dimensional groups with two-dimensional translations.

See also

  • International Tables for Crystallography, Volume E