Wigner-Seitz cell

From Online Dictionary of Crystallography

(Difference between revisions)
Jump to: navigation, search
m (Definition)
m
Line 1: Line 1:
<Font color="blue"> Maille de Wigner-Seitz </Font>(''Fr''). <Font color="red"> Wigner-Seitz Zell </Font>(''Ge''). <Font color="green"> Celda de Wigner-Seitz</Font> (''Sp'').<Font color="black"> Cella di Wigner-Seitz </Font>(''It'')
<Font color="blue"> Maille de Wigner-Seitz </Font>(''Fr''). <Font color="red"> Wigner-Seitz Zell </Font>(''Ge''). <Font color="green"> Celda de Wigner-Seitz</Font> (''Sp'').<Font color="black"> Cella di Wigner-Seitz </Font>(''It'')
-
 
== Definition ==
== Definition ==
Line 22: Line 21:
Section 1.5 of ''International Tables of Crystallography, Volume B''<br>
Section 1.5 of ''International Tables of Crystallography, Volume B''<br>
Sections 1.2 and 2.2 of ''International Tables of Crystallography, Volume D''<br>
Sections 1.2 and 2.2 of ''International Tables of Crystallography, Volume D''<br>
-
 
-
----
 
[[Category:Fundamental crystallography]]<br>
[[Category:Fundamental crystallography]]<br>

Revision as of 12:09, 8 February 2012

Maille de Wigner-Seitz (Fr). Wigner-Seitz Zell (Ge). Celda de Wigner-Seitz (Sp). Cella di Wigner-Seitz (It)

Definition

W-S-1.gif

The Wigner-Seitz cell is a a polyhedron obtained by connecting a lattice point P to all other lattice points and drawing the planes perpendicular to these connecting lines and passing through their midpoints (Figure 1). The polyhedron enclosed by these planes is the Wigner-Seitz cell. This construction is called the Dirichlet construction. The cell thus obtained is a primitive cell and it is possible to fill up the whole space by translation of that cell.


The Wigner-Seitz cell of a body-centred cubic lattice I is a cuboctahedron (Figure 2) and the Wigner-Seitz cell of a face-centred cubic lattice F is a rhomb-dodecahedron (Figure 3). In reciprocal space this cell is the first Brillouin zone. Since the reciprocal lattice of body-centred lattice is a face-centred lattice and reciprocally, the first Brillouin zone of a body-centred cubic lattice is a rhomb-dodecahedron and that of a face-centred cubic lattice is a cuboctahedron.

W-S-2.gifW-S-3.gif

The inside of the Wigner-Seitz cell has been called domain of influence by Delaunay (1933). It is also called Dirichlet domain or Voronoi domain. The domain of influence of lattice point P thus consists of all points Q in space that are closer to this lattice point than to any other lattice point or at most equidistant to it (such that OP ≤ |t - OP| for any vector tL).

See also

Section 9.1 of International Tables of Crystallography, Volume A
Section 1.5 of International Tables of Crystallography, Volume B
Sections 1.2 and 2.2 of International Tables of Crystallography, Volume D